GLEN DALE WATER WORKS WV3302605 Consumer Confidence Report – 2025 Covering Calendar Year – 2024

This brochure is a snapshot of the quality of the water that we provided last year. Included are the details about where your water comes from, what it contains, and how it compares to the Environmental Protection Agency (EPA) and state standards. We are committed to providing you with information because informed customers are our best allies. If you would like to observe the decision-making process that affects drinking water quality or if you have any questions, comments or suggestions, please attend any regularly scheduled water board meeting held on the *Wednesday* of each month at *5:00p.m.* in the *Glen Dale Water Works* or call TIM BEAVER at 304-845-4740.

Your water comes from Ground water:

Source Name Source Water Type

WELL #1 Ground water WELL #2 Ground water

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised people such as those with cancer undergoing chemotherapy, people who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

Drinking water, including bottled water, may reasonably be expected to contain at least some small amounts of contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline (800-426-4791).

The sources of drinking water (both tap water and bottled water) included rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in sources water before we treat it include:

<u>Microbial contaminants</u>, such as viruses and bacteria, may come from sewage treatment plants, septic systems, livestock operations and wildlife.

Inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

<u>Pesticides and herbicides</u>, which may come from a variety of sources such as storm water run-off, agriculture, and residential users.

Radioactive contaminants, which can be naturally occurring or the result of mining activity.

<u>Organic contaminants</u>, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and also come from gas stations, urban storm water run-off, and septic systems.

In order to ensure that tap water is safe to drink, EPA prescribes regulation which limit the amount of certain contaminants in water provided by public water systems. We treat our water according to EPA's regulations. Food and Drug Administration regulations establish limits for contaminants in bottled water, which must provide the same protection for public health.

Our water system has an estimated population of 2495 and is required to test a minimum of 2 sample(s) per month in accordance with the Total Coliform Rule for microbiological contaminants. Coliform bacteria are usually harmless, but their presence in water can be an indication of disease-causing bacteria. When coliform bacteria are found, special follow-up tests are done to determine if harmful bacteria are present in the water supply. If this limit is exceeded, the water supplier must notify the public.

Water Quality Data

The following tables list all of the drinking water contaminants which were detected during the 2024 calendar year. The presence of these contaminants does not necessarily indicate the water poses a health risk. Unless noted, the data presented in this table is from the testing done January 1- December 31, 2024. The state requires us to monitor certain contaminants less than once per year because the concentrations of these contaminants are not expected to vary significantly from year to year. Some of the data, though representative of the water quality, is more than one year old.

Terms & Abbreviations

Maximum Contaminant Level Goal (MCLG): the "Goal" is the level of a contaminant in drinking water below which there is no known or expected risk to human health. MCLGs allow for a margin of safety.

Maximum Contaminant Level (MCL): the "Maximum Allowed" is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Secondary Maximum Contaminant Level (SMCL): recommended level for a contaminant that is not regulated and has no MCI.

Action Level (AL): the concentration of a contaminant that, if exceeded, triggers treatment or other requirements.

Treatment Technique (TT): a required process intended to reduce levels of a contaminant in drinking water.

Maximum Residual Disinfectant Level (MRDL): the highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Non-Detects (ND): lab analysis indicates that the contaminant is not present.

Parts per Million (ppm): or milligrams per liter (mg/L)
Parts per Billion (ppb): or micrograms per liter (µg/L)

Picocuries per Liter (pCi/L): a measure of the radioactivity in water.

Millirems per Year (mrem/yr): measure of radiation absorbed by the body.

Monitoring Period Average (MPA): An average of sample results obtained during a defined time frame, common examples of monitoring periods are monthly, quarterly, and yearly.

Nephelometric Turbidity Unit (NTU): a measure of the clarity of water. Turbidity in excess of 5 NTU is just noticeable to the average person. Turbidity is not regulated for groundwater systems.

Running Annual Average (RAA): an average of sample results obtained over the most current 12 months and used to determine compliance with MCLs.

<u>Locational Running Annual Average (LRAA):</u> Average of sample analytical results for samples taken at a particular monitoring location during the previous four calendar quarters.

Testing Results for: GLEN DALE WATER WORKS

Regulated Contaminants Collection Date Highest Value (low/high) Unit MCL MCLG Typical Source										
(low/high)	Unit	MCL	MICEG	туріса	Source					
BARIUM 10/30/2	2023	0.091	0.089 - (0.091	ppm	2	2	Dischar	ge of drilling wastes; Discharge	
from metal refineries; Erosion of natural deposits										
CHROMIUM	10/30/2	023	1.4	0.99 - 1	1.4	ppb	100	100	Discharge from steel and pulp	
mills; Erosion of natural deposits										
FLUORIDE	10/30/2	023	0.11	0.09 - 0	0.11	ppm	4	4	Erosion of natural deposits;	
Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories										
NITRATE	9/11/20	24	2.3	2.3	ppm	10	10	Runoff	from fertilizer use; Leaching from	
septic tanks, sewage; Erosion of natural deposits										
NITRATE-NITRI	TE	9/11/202	24	2.3	2.3	ppm	10	10	Runoff from fertilizer use;	
Leaching from septic tanks, sewage; Erosion of natural deposits										

Disinfection Byproducts Sample Point	Collec	tion Dat	e Highest LRAA	Value	Range			
(low/high)								
Unit MCL MCLG Typical	Source							
TOTAL HALOACETIC ACIDS (HAA5)	SKYLII	NE HYD	ROSTATION	2024	2	2.1 - 2.1	1 ppb	60
0 By-product of drinking water disinfe	ection							
TTHM SKYLINE HYDROSTATION	2024	18	18.34 - 18.34	ppb	80	0	By-pro	duct
of drinking water chlorination								

Lead and Copper	Monitoring	Monitoring Period			Range					
(low/high) Unit	AL Si	tes Over AL	Typical	Source						
COPPER, FREE 2022	- 2024 0.	12 0.0057	- 0.23	ppm	1.3	0	Corrosio	on of household		
plumbing systems; Erosion of natural deposits; Leaching from wood preservatives										
LEAD	20)22 - 2024	1.3	0 - 1.5	ppb	15	0	Corrosion of		
household plumbing sy	stems: Frosion	of natural depo	osits							

There is no safe level of lead in drinking water. Exposure to lead in drinking water can cause serious health effects in all age groups, especially pregnant people, infants (both formula-fed and breastfed), and young children. Some of the health effects to infants and children include decreases in IQ and attention span. Lead exposure can also result in new or worsened learning and behavior problems. The children of people who are exposed to lead before or during pregnancy may be at increased risk of these harmful health effects. Adults have increased risks of heart disease, high blood pressure, kidney, or nervous system problems. Contact your health care provider for more information about your risks.

Lead can cause serious health effects in people of all ages, especially pregnant people, infants (both formula-fed and breastfed), and young children. Lead in drinking water is primarily from materials and parts used in service lines and in home plumbing. GLEN DALE WATER WORKS is responsible for providing high quality drinking water and removing lead pipes but cannot control the variety of materials used in the plumbing in your home. Because lead levels may vary over time, lead exposure is possible even when your tap sampling results do not detect lead at one point in time. You can help protect yourself and your family by identifying and removing lead materials within your home plumbing and taking steps to reduce your family's risk. Using a filter, certified by an American National Standards Institute accredited certifier to reduce lead, is effective in reducing lead exposures. Follow the instructions provided with the filter to ensure the filter is used properly. Use only cold water for drinking, cooking, and making baby formula. Boiling water does not remove lead from water. Before using tap water for drinking, cooking, or making baby formula, flush your pipes for several minutes. You can do this by running your tap, taking a shower, doing laundry or a load of dishes. If you have a lead service line or galvanized requiring replacement service line, you may need to flush your pipes for a longer period. If you are concerned about lead in your water and wish to have your water tested, contact GLEN DALE WATER WORKS and JANET SCOTT at 304-845-5511. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available at https://www.epa.gov/safewater/lead.

GLEN DALE WATER WORKS completed lead tap sampling in 2022 - 2024. The results are available for review and can be accessed upon request from city hall.

GLEN DALE WATER WORKS has prepared a service line inventory identifying service line materials throughout the water distribution supply. The most up to date inventory is located at city hall. By November 1, 2027, our water system must develop an updated initial inventory, known as the "baseline inventory" and it must include each service line and identified connector that is connected to the public water distribution system.

Our water system identified no lead service lines in our inventory. Due to this identification our water system must create a service line replacement plan by November 1, 2027.

If you have any questions about our inventory or if you would like information about our service line replacement plan, please contact Tim Beaver at 304-845-4740.

Chlorine/Chloramines Maximum Disinfection Level MPA MPA Units RAA RAA Units 8/1/2024 - 8/31/2024 0.61000 MG/L 0.52000 MG/L

AVAILABILITY OF MONITORING DATA FOR UNREGULATED CONTAMINANTS

Our water system has sampled for a series of unregulated contaminants. Unregulated contaminants are those that do not yet have a drinking water standard set by the US Environmental Protection Agency (EPA). The purpose of monitoring these contaminants is to help EPA decide whether the contaminants should have a standard. As our customers, you have a right to know that this data is available. If you are interested in examining the results, please contact Tim Beaver at 304-845-4740.

Unresolved Deficiency

Date Identified Facility Comments: All Back up power Issues have been resolved.

2/24/2022 TREATMENT PLANT Back up generator is required as listed in the 2017 survey

2/24/2022 WATER SYSTEM The system is working through 2017 survey deficiencies. Back up power needed for the treatment plant and at the booster station at the main tank.

Radiological Co COMBINED RAD deposits	ntaminants DIUM (-226 & -228)			Highest 0.72		Range pCi/L	Unit 5	MCL 0		Typical Source of natural
GROSS ALPHA,	INCL. RADON & U	J	10/16/20	023	3.15	0 - 3.15	PCI/L	0	0	Decay of
natural and man- RADIUM-228	made deposits 10/30/2023	0.72	0 - 0.72	pCi/L	0	0	Erosion	of natura	l deposits	3

Secondary Contaminants-Non-Health Based Contaminants-No Federal Maximum Contaminant Level (MCL)

Established. Collection Date Highest Value Range

(low/high) Unit SMCL

NICKEL 10/16/2023 0.0014 0 - 0.0014 MG/L 0.1 SODIUM 10/30/2023 32 31 - 32 MG/L 1000

During the 2024 calendar year, we had the below noted violation(s) of drinking water regulations.

Compliance Period Analyte Comments

7/1/2024 - 7/1/2024 CONSUMER CONFIDENCE RULE Failed to deliver the Consumer Confidence Report to the state or consumers on time. Issue Resolved.

Additional Required Health Effects Language:

Coliforms are bacteria that are naturally present in the environment and are used as an indicator that other, potentially harmful waterborne pathogens may be present, or that a potential pathway exists through which contamination may enter the drinking water distribution system. We found coliforms, indicating the need to look for potential problems in water treatment or distribution. When this occurs, we are required to conduct assessments(s) to identify and correct any problems that were found during these assessments.

Some people who drink water containing Haloacetic acids in excess of the MCL over many years may have an increased risk of getting cancer.

Some people who drink water containing trihalomethanes in excess of the MCL over many years may experience problems with their liver, kidneys, or central nervous systems, and may have an increased risk of getting cancer.

Infants and children are typically more vulnerable to lead in drinking water than the general population. It is possible that lead levels at your home may be higher than at other homes in the community as a result of materials used in your home's plumbing. If you are concerned about elevated lead levels in your home's water, you may wish to have your water tested and flush your tap for 30 seconds to 2 minutes before using tap water. Additional information is available from the Safe Drinking Water Hotline (800-426-4791).

Your CCR is available upon request from The Glen Dale Water Office. To receive a copy in the mail, please contact us at 304 845-4740.